
38.24. Model: To conserve energy, the emission and the absorption spectra must have exactly the energy lost or gained by the atom in the appropriate quantum jumps. Solve: (a) E(eV)

(b) From Equation 38.4, the energy of a light quantum is $E = hf = hc/\lambda$. We can use this equation to find the emission and absorption wavelengths. The emission energies from the above energy-level diagram are: $E_{2\rightarrow 1} = 4.0 \text{ eV}$, $E_{3\rightarrow 1} = 6.0 \text{ eV}$, and $E_{3\rightarrow 2} = 2.0 \text{ eV}$. The wavelength corresponding to the 2 \rightarrow 1 transition is

$$\lambda_{2 \to 1} = \frac{hc}{E_{21}} = \frac{(4.14 \times 10^{-15} \text{ eV s})(3.0 \times 10^8 \text{ m/s})}{4.0 \text{ eV}} = 311 \text{ nm}$$

Likewise, $\lambda_{3\to 1} = hc/E_{3\to 1} = 207 \text{ nm}$, and $\lambda_{3\to 2} = 622 \text{ nm}$.

(c) Absorption transitions start from the n = 1 ground state. The energies in the atom's absorption spectrum are $E_{1\to 2} = 4.0$ eV and $E_{1\to 3} = 6.0$ eV. The corresponding wavelengths are $\lambda_{1\to 2} = hc/E_{1\to 2} = 311$ nm and $\lambda_{1\to 3} = hc/E_{1\to 3} = 207$ nm.